Using the eigenvectors and energies from a diagonalized rotational Hamiltonian, determine which projection is maximal. The eigenvectors can be in the Ka or Kc basis. This routine will return the array Kvals which indicats the absolute value of the projection that contributes the most to a particular eigenvector
| Type | Intent | Optional | Attributes | Name | ||
|---|---|---|---|---|---|---|
| integer, | intent(in) | :: | N |
The rotational quantum number |
||
| complex(kind=dp), | intent(in) | :: | eigvecs(:,:) |
Eigenvectors |
||
| integer, | intent(out), | allocatable | :: | absKvals(:) |
Array of the absolte value of |K| that contributes the most to a particular eigenvector |
|
| logical, | intent(in), | optional | :: | sort_eigvecs |
Sort the eigenvectors ? |